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Regression
Gauss (1809), Galton (1877)

› Prediction
random forests, boosting, support vector machines,
neural nets, deep learning

› Estimation
OLS, logistic regression, GLM: MLE

› Attribution (significance)

ANOVA, lasso, Neyman–Pearson
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Estimation
Normal Linear Regression

› Observe

yi = —i + ›i for i = 1; : : : ; n

—i = xti˛

xi a p-dimensional covariate

›i ‰ N (0; ff2)

˛ unknown

y
n

= X
nˆp

˛
p

+ ε
n

› Surface plus noise y = µ(x) + ε

› Surface fµ(x); x 2 Xg: codes scientific truth (hidden by noise)

› Newton’s second law acceleration = force / mass
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m
ass

force

acceleration

Newton's 2nd law: acceleration=force/mass
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cceleration

If Newton had done the experiment
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Example
The Cholesterol Data

› n = 164 men took cholostyramine

› Observe (ci; yi)

ci = normalized compliance (how much taken)

yi = reduction in cholesterol

› Model yi = xti˛ + ›i

xti = (1; ci; c
2
i ; c

3
i ) ›i ‰ N (0; ff2)

› n = 164, p = 4
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OLS cubic regression: cholesterol decrease vs normalized compliance;
bars show 95% confidence intervals for the curve.

sigmahat=21.9; only intercept and linear coefs significant
normalized compliance
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Adj Rsquared =.481
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Neonate Example

› n = 800 babies in an African facility

› 600 lived, 200 died

› 11 covariates: apgar score, body weight, . . .

› Logistic regression n = 800, p = 11

glm( y
800
‰ X

800ˆ11
; binomial)

yi = 1 or 0 as baby dies or lives

xi = ith row of X (vector of 11 covariates)

› Linear logistic surface, Bernoulli noise
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Output of logistic regression program
predictive error 15%

estimate st.error z-value p-value
gest `:474 .163 `2:91 .004**
ap `:583 .110 `5:27 .000***
bwei `:488 .163 `2:99 .003**
resp .784 .140 5.60 .000***
cpap .271 .122 2.21 .027*
ment 1.105 .271 4.07 .000***
rate `:089 .176 `:507 .612
hr .013 .108 .120 .905
head .103 .111 .926 .355
gen `:001 .109 `:008 .994
temp .015 .124 .120 .905
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Prediction Algorithms
Random Forests, Boosting, Deep Learning, . . .

› Data d = f(xi; yi); i = 1; 2; : : : ; ng
yi = response

xi = vector of p predictors

(Neonate: n = 800, p = 11, y = 0 or 1)

› Prediction rule f(x; d)

New (x, ?) gives ŷ = f(x; d)

› Strategy Go directly for high predictive accuracy;
forget (mostly) about surface + noise

› Machine learning
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Classification Using Regression Trees

› n cases: n0 = “0” and n1 = “1”

› p predictors (features)
(Neonate: n = 800; n0 = 600; n1 = 200; p = 11)

› Split into two groups with predictor and split value chosen
to maximize difference in rates

› Then split the splits, etc.. . . (some stopping rule)
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|cpap< 0.6654

gest>=−1.672 gest>=−1.941

ap>=−1.343

resp< 1.210
544/73

1
3/11

0
39/29

1
13/32

1
5/22

1
1/40

<− lived died −>

Classification Tree: 800 neonates, 200 died
   ( <<−− lived         died −−>> )

worst bin●
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Random Forests
Breiman (2001)

1. Draw a bootstrap sample of original n cases

2. Make a classification tree from the bootstrap data set except
at each split use only a random subset of the p predictors

3. Do all this lots of times (ı 1000)

4. Prediction rule For any new x predict ŷ = majority of
the 1000 predictions
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The Prostate Cancer Microarray Study

› n = 100 men: 50 prostate cancer, 50 normal controls

› For each man measure activity of p = 6033 genes

› Data set d is 100ˆ 6033 matrix (“wide”)

› Wanted: Prediction rule f(x; d) that inputs new 6033-vector x
and outputs ŷ correctly predicting cancer/normal
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Random Forests
for Prostate Cancer Prediction

› Randomly divide the 100 subjects into

“training set” of 50 subjects (25 + 25)

“test set” of the other 50 (25 + 25)

› Run R program randomforest on the training set

› Use its rule f(x; dtrain) on the test set and see how many
errors it makes
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Prostate cancer prediction using random forests
Black is cross−validated training error, Red is test error rate

number trees

er
ro

r
train err 5.9%
test err 2.0%

Bradley Efron, Stanford University Prediction, Estimation, and Attribution 16 36



0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Now with boosting algorithm 'gbm'

# tree

er
r.r

at
e

error rates
train 0%, test=4%
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Now using deep learning (“Keras”)
# parameters = 780; 738

lo
ss

ac
c
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data
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Prediction is Easier than Estimation

› Observe

x1; x2; x3; : : : ; x25
ind‰ N (—; 1)

—x = mean,
?
x = median

› Estimation

E


(—`
?
x)2

ffffi
E
n

(—` —x)2
o

= 1:57

› Wish to predict new X0 ‰ N (—; 1)

› Prediction

E


(X0 `
?
x)2

ffffi
E
n

(X0 ` —x)2
o

= 1:02

Bradley Efron, Stanford University Prediction, Estimation, and Attribution 19 36



Prediction is Easier than Attribution

› Microarray study N genes: zj
ind‰ N (‹j; 1); j = 1; 2; : : : ; N

N0 : ‹j = 0 (null genes)

N1 : ‹j > 0 (non-null)

› New subject’s microarray: xj ‰ N (˚‹j; 1)

8><>:
+ sick

` healthy

› Prediction

Possible if N1 = O
„
N

1=2
0

«

› Attribution
Requires N1 = O(N0)

› Prediction allows accrual of “weak learners”
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Prediction and Medical Science

› Random forest test set predictions made only 1 error out of 50!

› Promising for diagnosis

› Not so much for scientific understanding

› Next
“Importance measures” for the predictor genes
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Importance measures for genes in randomForest prostate analysis;
Top two genes # 1022 and 5569
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Were the Test Sets Really a Good Test?

› Prediction can be highly context-dependent and fragile

› Before Randomly divided subjects into “training” and “test”

› Next
50 earliest subjects for training

50 latest for test

both 25 + 25
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Random Forests: Train on 50 earliest, Test on 50 latest subjects;
Test error was 2%, now 24%

number trees
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ro

r
train err 0%
test err 24%

before 2%

●
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Same thing for boosting (gbm)
Test error now 29%, was 4%

# tree

er
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at
e

error rates
train 0, test=29%

●
before 4%
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Truth, Accuracy, and Smoothness

› Estimation and Attribution: seek long-lasting scientific truths

physics

astronomy

medicine

economics?

› Prediction algorithms: truths and ephemeral relationships

credit scores

movie recommendations

image recognition

› Estimation and Attribution: theoretical optimality
(MLE, Neyman–Pearson)

› Prediction training-test performance

› Nature: rough or smooth?
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Cholesterol data: randomForest estimate (X=poly(c,8)), 500 trees,
compared with cubic regression curve

compliance
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Adj R2 cubic .482
RandomForest .404
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Now using boosting algorithm gbm

green dashed curve: 8th degree poly fit, adjRsq=.474
adjusted compliance
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Cubic adjRsq .482
gbm crossval Rsq .461
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Estimation v. Prediction Algorithms

1 Surface plus noise Direct prediction

2 Scientific truth Empirical prediction efficiency
(eternal or at least long-lasting) (could be ephemeral, e.g., commerce)

3 X
nˆp

: p < n (p moderate) p > n (both possibly huge, “n = all”)

4 X chosen parsimoniously Anti-parsimony
(main effects fl interactions) (algorithms expand X)

5 Parametric modeling Mostly nonparametric
(condition on x’s; smoothness) ((x; y) pairs iid)

6 Homogeneous data (RCT) Very large heterogeneous data sets

7 Theory of optimal estimation Training and test sets
(MLE) (CTF, asymptotics)
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Estimation and Attribution
in the Wide-Data Era

› Large p (the number of features) affects Estimation

MLS can be badly biased for individual parameters

“surface” if, say, p = 6033?

› Attribution still of interest

› GWAS n = 4000; p = 500; 000

› Two-sample p-values for each SNP

› Plotted: ` log10(p)
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Attribution and Estimation
for the Prostate Cancer Study

› X
nˆp

: n = 100 men (50 + 50), p = 6033 genes

genei gives zi ‰ N (‹i; 1)

‹i = effect size

› Local false discovery rate fdr(zi) = Prf‹i = 0 j zig
› Effect size estimate E(zi) = Ef‹i j zig

Bayes and empirical Bayes

locfdr
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fdr(z) and E{effect size|z}, prost data;  Triangles:
Red the 29 genes with fdr<.2; Green the 1st 29 glmnet genes

at z=4: fdr=.22 and E{del|z}=2.3
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E
{d

el
|z

}

4*fdr

E{del|z}
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Sparse Models and the Lasso

› We want to use OLS — min ky `X˛k2 — but p is too big

› Instead minimize ky `X˛k2 + –
Pp

1

˛̨̨
^̨j
˛̨̨

Large – gives sparse ^̨

glmnet does this for logistic regression

› In between classical OLS and boosting algorithms

› Have it both ways?
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Two Trends

› Making prediction algorithms better for scientific use

smoother

more interpretable

less brittle

› Making traditional estimation/attribution methods better
for large-scale (n; p) problems

less fussy

more flexible

better scaled
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