# Prediction, Estimation, and Attribution

#### **Bradley Efron**

brad@stat.stanford.edu

Department of Statistics Stanford University



## Regression

Gauss (1809), Galton (1877)

#### Prediction

random forests, boosting, support vector machines, neural nets, deep learning

#### Estimation

OLS, logistic regression, GLM: MLE

• Attribution (significance)

ANOVA, Lasso, Neyman–Pearson

## Estimation

Normal Linear Regression

#### Observe

• 
$$y_i = \mu_i + \epsilon_i$$
 for  $i = 1, \ldots, n$ 

 $\blacksquare \mu_i = x_i^t \beta$ 

# **a** $x_i = p$ -dimensional covariate $y = \frac{X}{n \times p} \frac{\beta}{p} + \frac{\epsilon}{n}$

• 
$$\epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

■ β unknown

- Surface plus noise  $y = \mu(x) + \epsilon$
- Surface  $\{\mu(x), x \in \mathcal{X}\}$ : codes scientific truth (hidden by noise)
- Newton's second Law acceleration = force / mass





#### Example

The Cholesterol Data

- n = 164 men took cholostyramine
- Observe  $(c_i, y_i)$ 
  - $c_i$  = normalized compliance (how much taken)
  - $y_i$  = reduction in cholesterol
- Model  $y_i = x_i^t \beta + \epsilon_i$

$$x_i^t = (1, c_i, c_i^2, c_i^3) \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

• n = 164, p = 4



#### OLS cubic regression: cholesterol decrease vs normalized compliance; bars show 95% confidence intervals for the curve.

Bradley Efron, Stanford University Prediction, Estimation, and Attribution

- n = 800 babies in an African facility
- 600 Lived, 200 died
- 11 covariates: apgar score, body weight, ...
- Logistic regression n = 800, p = 11

$$\operatorname{glm}(\mathop{y}_{\scriptscriptstyle{800}}\sim\mathop{X}_{\scriptscriptstyle{800 imes11}}$$
, binomial)

- $y_i = 1$  or 0 as baby dies or lives
- $x_i = i$ th row of X (vector of 11 covariates)
- Linear logistic surface, Bernoulli noise

# Output of logistic regression program

predictive error 15%

|      | estimate | st.error | z-value | <i>p</i> -value |
|------|----------|----------|---------|-----------------|
| gest | 474      | .163     | -2.91   | .004**          |
| ар   | 583      | .110     | -5.27   | .000***         |
| bwei | 488      | .163     | -2.99   | .003**          |
| resp | .784     | .140     | 5.60    | .000***         |
| срар | .271     | .122     | 2.21    | .027*           |
| ment | 1.105    | .271     | 4.07    | .000***         |
| rate | 089      | .176     | 507     | .612            |
| hr   | .013     | .108     | .120    | .905            |
| head | .103     | .111     | .926    | .355            |
| gen  | 001      | .109     | 008     | .994            |
| temp | .015     | .124     | .120    | .905            |

## **Prediction Algorithms**

Random Forests, Boosting, Deep Learning, ...

- Data  $d = \{(x_i, y_i), i = 1, 2, ..., n\}$ 
  - $y_i = \text{response}$
  - $x_i =$  vector of p predictors

(Neonate: n = 800, p = 11, y = 0 or 1)

• Prediction rule f(x, d)

New (x, ?) gives  $\hat{y} = f(x, d)$ 

- Strategy Go directly for high predictive accuracy; forget (mostly) about surface + noise
- Machine Learning

- *n* cases:  $n_0 = ``0"$  and  $n_1 = ``1"$
- p predictors (features) (Neonate:  $n = 800, n_0 = 600, n_1 = 200, p = 11$ )
- *Split into two groups* with predictor and split value chosen to maximize difference in rates
- Then split the splits, etc.... (some stopping rule)

Classification Tree: 800 neonates, 200 died (<<-- lived died -->>)



## **Random Forests**

Breiman (2001)

- 1. Draw a bootstrap sample of original n cases
- 2. Make a classification tree from the bootstrap data set *except* at each split use only a random subset of the p predictors
- 3. Do all this lots of times ( $\approx$  1000)
- 4. Prediction rule For any new x predict  $\hat{y}$  = majority of the 1000 predictions

- n = 100 men: 50 prostate cancer, 50 normal controls
- For each man measure activity of p = 6033 genes
- Data set d is 100 x 6033 matrix ("wide")
- Wanted: Prediction rule f(x, d) that inputs new 6033-vector x and outputs  $\hat{y}$  correctly predicting cancer/normal

## **Random Forests**

for Prostate Cancer Prediction

- Randomly divide the 100 subjects into
  - "training set" of 50 subjects (25 + 25)
  - "test set" of the other 50 (25 + 25)
- Run R program randomforest on the training set
- Use its rule  $f(x, d_{\text{train}})$  on the test set and see how many errors it makes



#### Prostate cancer prediction using random forests Black is cross-validated training error, Red is test error rate

#### Now with boosting algorithm 'gbm'



## Now using deep Learning ("Keras")

# parameters = 780, 738



### Prediction is Easier than Estimation

Observe

• 
$$x_1, x_2, x_3, \dots, x_{25} \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu, 1)$$
  
•  $\bar{x} = \text{mean}, \quad \dot{x} = \text{median}$ 

• Estimation

$$E\left\{(\mu-\bar{x})^{2}\right\}/E\left\{(\mu-\bar{x})^{2}\right\}=1.57$$

• Wish to predict new  $X_0 \sim \mathcal{N}(\mu, 1)$ 

Prediction

$$E\left\{(X_0 - \bar{x})^2\right\} / E\left\{(X_0 - \bar{x})^2\right\} = 1.02$$

#### Prediction is Easier than Attribution

- Microarray study N genes: z<sub>j</sub> ∼ N(δ<sub>j</sub>, 1), j = 1, 2, ..., N
   N<sub>0</sub>: δ<sub>j</sub> = 0 (null genes)
  - $\blacksquare N_1 : \delta_i > 0 \text{ (non-null)}$
- New subject's microarray:  $x_j \sim \mathcal{N}(\pm \delta_j, 1) iggl\{ + \text{ sick} \\ \text{ healthy} \$

Prediction

Possible if 
$$N_1 = O\left(N_0^{1/2}\right)$$

• Attribution

Requires 
$$N_1 = O(N_0)$$

Prediction allows accrual of "weak learners"

#### Prediction and Medical Science

- Random forest test set predictions made only 1 error out of 50!
- Promising for diagnosis
- Not so much for scientific understanding
- Next

"Importance measures" for the predictor genes



#### Importance measures for genes in randomForest prostate analysis; Top two genes # 1022 and 5569

- Prediction can be highly context-dependent and fragile
- Before Randomly divided subjects into "training" and "test"
- Next
  - 50 earliest subjects for training
  - 50 latest for test
  - both 25 + 25



#### Random Forests: Train on 50 earliest, Test on 50 latest subjects; Test error was 2%, now 24%

#### Same thing for boosting (gbm) Test error now 29%, was 4%



## Truth, Accuracy, and Smoothness

- Estimation and Attribution: seek long-lasting scientific truths
  - physics
  - astronomy
  - medicine
  - economics?
- Prediction algorithms: truths and ephemeral relationships
  - credit scores
  - movie recommendations
  - image recognition
- Estimation and Attribution: theoretical optimality (MLE, Neyman–Pearson)
- Prediction training-test performance
- Nature: rough or smooth?



#### Cholesterol data: randomForest estimate (X=poly(c,8)), 500 trees, compared with cubic regression curve



#### Now using boosting algorithm gbm

# Estimation v. Prediction Algorithms

- 1 Surface plus noise
- 2 Scientific truth (eternal or at least long-lasting)
- 3  $X_{n \times p}$ : p < n (p moderate)
- 4 X chosen parsimoniously (main effects  $\gg$  interactions)
- 5 Parametric modeling (condition on *x*'s; smoothness)
- 6 Homogeneous data (RCT)
- 7 Theory of optimal estimation (MLE)

Direct prediction

Empirical prediction efficiency (could be ephemeral, e.g., commerce)

p>n (both possibly huge, "n= all")

Anti-parsimony (algorithms expand X)

Mostly nonparametric ((x, y) pairs iid)

Very large heterogeneous data sets

Training and test sets (CTF, asymptotics)

## **Estimation and Attribution**

in the Wide-Data Era

- Large p (the number of features) affects Estimation
  - MLS can be badly biased for individual parameters
  - "surface" if, say, p = 6033?
- Attribution still of interest
- GWAS n = 4000, p = 500, 000
- Two-sample *p*-values for each SNP
- Plotted:  $-\log_{10}(p)$



## **Attribution and Estimation**

for the Prostate Cancer Study

- $X_{n \times p}$ : n = 100 men (50 + 50), p = 6033 genes
  - gene<sub>i</sub> gives  $z_i \sim \mathcal{N}(\delta_i, 1)$
  - $\delta_i = \text{effect size}$
- Local false discovery rate  $fdr(z_i) = Pr\{\delta_i = 0 \mid z_i\}$
- Effect size estimate  $E(z_i) = E\{\delta_i \mid z_i\}$ 
  - Bayes and empirical Bayes
  - locfdr



#### fdr(z) and E{effect size|z}, prost data; Triangles: Red the 29 genes with fdr<.2; Green the 1st 29 glmnet genes

- We want to use OLS min  $||y X\beta||^2$  but p is too big
- Instead minimize  $\|y Xeta\|^2 + \lambda \sum_1^p \left|\widehat{eta}_j
  ight|$ 
  - Large  $\lambda$  gives sparse  $\hat{\beta}$
  - glmnet does this for logistic regression
- In between classical OLS and boosting algorithms
- Have it both ways?

- Making prediction algorithms better for scientific use
  - smoother
  - more interpretable
  - less brittle
- Making traditional estimation/attribution methods better for large-scale (n, p) problems
  - Less fussy
  - more flexible
  - better scaled

Algorithms Hastie, Tibshirani and Friedman (2009). The Elements of Statistical Learning 2nd ed.

Random Forests Breiman (2001). "Random forests."

Data Science Donoho (2015). "50 years of data science."

- CART Breiman, Friedman, Olshen and Stone (1984). Classification and Regression Trees.
- Locfdr Efron (2010). Large-Scale Inference.

Lasso & glmnet Friedman, Hastie and Tibshirani (2010). "Regularization paths for generalized linear models via coordinate descent."